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Seismocardiography (SCG) is a technique that non-invasively measures the chest wall’s local
vibrations caused by the heart’s mechanical activity. Traditionally, SCG signals have been recorded
using accelerometers placed at a single location on the chest wall. This study presents an innovative,
cost-effective SCG method that utilizes standard smartphone videos to capture data from multiple
chest locations. The analysis of vibrations from multiple points can offer a more thorough
understanding of the heart’s mechanical activity compared to signals obtained solely from a single
chest location. Our approach employs computer vision and deep learning techniques to extract and
improve the resolution of multichannel SCGmaps obtained by video capture of chest movement. We
attached a grid of patterned stickers to the chest surface and recorded videos of chest movements
during different respiratory phases. Using a deep learning-based object detector and a template
tracking method, we tracked the stickers across video frames and extracted the corresponding SCG
signals from sticker displacements. We also developed a robust algorithm to estimate heart rate (HR)
from these chest videos and identify the optimal chest location for HR estimation. The method was
tested on 28 chest videos captured from 14 healthy participants. The results demonstrated that our
method effectively extracted multichannel SCG maps and enhanced their resolution with a mean
squared error of 0.1078 and 0.0418 for right-to-left and head-to-foot SCG signals, respectively. We
observed intersubject chest vibration patterns corresponding to cardiac events including opening and
closure of the heart valves. Moreover, our algorithm accurately estimated HR from 1968 SCG signals
extracted from the videos compared to the gold-standard HR measured from each subject’s
electrocardiogram (bias ± 1.96 SD = 0.04 ± 2.14 bpm; r = 0.99, p < 0.001). The findings from this study
underscore the potential of our approach in developing a cardiac monitoring tool using a smartphone
that would be widely accessible to the general public and might provide more timely detection of
diseases.

Cardiovascular diseases (CVDs) remain a significant global health chal-
lenge, causing an estimated 17.9 million fatalities annually1. This alarming
figure represents roughly 32% of all deaths globally, highlighting the
pressing need for efficient monitoring and diagnostic tools. The American
Heart Association has emphasized the significant health and economic
impact of CVDs, both in the United States and internationally2. Early

detection and accuratediagnosis of heart conditions are crucial components
of addressing this burden, as they can play an important role in enhancing
patient outcomes and decreasing the CVDs’ strain on healthcare systems.
Currently, a variety of techniques, both invasive and non-invasive, are
employed for cardiacmonitoring. Invasivemethods are typically performed
in clinical settings, whereas remote monitoring systems predominantly
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utilize non-invasive approaches, which are operable beyond the boundaries
of healthcare facilities.

Over the past few years, seismocardiography (SCG) has appeared as a
promising cardiovascular monitoring method, providing complementary
information to well-established techniques such as electrocardiography
(ECG)3–6. SCG is a noninvasive method that captures and quantifies subtle
vibrations of the chest wall caused by the mechanical activities of the heart,
including the opening and closing of cardiac valves, along with the rapid
ejection and refilling of the ventricles. The SCG signal offers crucial insights
into the timing of the aortic andmitral valves’ opening and closing, making
it a powerful tool for investigating cardiac function7–9. Moreover, SCG has
demonstrated potential in monitoring various cardiovascular problems,
such as coronary heart disease, ischemia, aortic stenosis, myocardial
infarction, and hemorrhage10–16.

Conventionally, SCG signals are measured from a single point on the
chest using an accelerometer affixed to that spot. However, multichannel
SCG measurements from various chest locations offer more precise and
additional clinical data17–20. Current methods for capturing SCG signals
frommultiple chest points are primarily restricted to accelerometer arrays,
and contactless techniques based on laser Doppler vibrometry and airborne
ultrasound5,21,22. Accelerometer arrays have the disadvantage of requiring
direct contactwith the patient and are laborious for use in practice or remote
monitoring. In addition, even ultra-lightweight accelerometers can cause
non-negligible loading effects22. On the other hand, the current contactless
laser or ultrasound-based methods are either expensive, challenging for
inexperienced users, or require cumbersome equipment, hindering their
application outside of clinical or research environments. What is lacking,
therefore, is a convenient way of high-resolution multichannel SCG
acquisition. To address this gap, the objective of this study is to introduce a
novel approach using computer vision and deep learning to generate
multichannel SCG maps from video footage of the human chest.

With the advancement of computer vision and sensors in recent years,
vision-based techniques have gainedpopularity in extracting objectmotions
from videos23,24. Recently, we developed a novel pipeline for measuring
0–30Hz SCG signals from chest videos recorded by an ordinary
smartphone25. The pipeline’s accuracy was validated by comparing vision-
based signals with the gold-standard signals from industry-grade accel-
erometers. Results demonstrated a high accuracy in extracting SCG signals
from chest videos, with all similarity indices exceeding 0.9425. The current
study introduces several key advancements that extend the capabilities of
our earlier work, providing both higher resolution and greater clinical
relevance. First, unlike the earlier approach,which reliedon a single-channel
SCG signal, the current study utilizes amultichannel SCG approach. This is
a significant leap forward in sensing chest vibrations, as it not only enhances
the spatial resolution of the extracted signals but also enables precise
identification of optimal chest locations for accurate physiological mea-
surements, such as heart rate (HR). This multichannel capability allows for
the construction of SCG maps that provide a more comprehensive view of
cardiac activities, including rapid ejectionphases and valve dynamics, which
were not as detailed in our previous work.

Our approach involves tracking the motion of a grid of patterned
stickers on the chest skin from chest videos recorded during different
respiratory phases, i.e., breath-hold at the end of both inhalation and
exhalation. For this purpose, we employ a deep learning-based object
detector to identify and localize the stickers in the first frame of the videos,
followed by template tracking to monitor each sticker’s movement across
subsequent frames. This method enables us to extract SCG signals corre-
sponding to the vibrations of each sticker. Furthermore, to enhance the
resolution of the extracted multichannel SCG maps and provide a more
detailed view of the chest vibrations, we propose a deep-learning model to
interpolate between the measured SCG signals. This interpolation sig-
nificantly improves the spatial resolution of the multichannel SCG maps,
offering a more granular analysis of the chest’s mechanical activities.
Additionally, we present an innovative algorithm to detect HR from the
multichannel SCG signals, offering a more robust and accurate

measurement compared to single-channel vision-based approaches. The
findings of this study provide strong support for developing a smartphone-
based, portable, non-invasive, and cost-effective multichannel SCG mon-
itoring tool that could increase access to cardiacmonitoring and potentially
reduce time-to-diagnosis and healthcare costs associated with CVDs.

Results
Study protocol
A total of 17 subjects were recruited in this study, all of whom had no
previous instances ofCVDs.While data from thefirst 14 subjects (4 females:
{S04, S05, S13, S14}, age: 23.50 ± 5.16 years, height: 170.80 ± 9.35 cm,
weight: 70.07 ± 13.97 kg, BMI: 23.93 ± 4.07 kg/m2) was used to develop the
vision-based algorithm, data from the remaining subjects (1 female, age:
35.33 ± 21.39years, height: 169.33 ± 9.00 cm,weight: 83.22 ± 50.52 kg,BMI:
28.08 ± 14.14 kg/m2) was only used for training and testing the deep
learning methods. One of the participants (S08) disclosed a history of epi-
lepsy and exhibited diminished strength on the right side of the body in
contrast to the left side. The study protocol received approval from the
institutional review board of Mississippi State University. All participants
gave informed consent and filled out a brief health condition survey. Also,
consent was obtained for the publication of the chest photographs and
videos from one of the subjects.

To minimize movement artifacts during data collection, all subjects
rested supine on a bed and were instructed to avoid any unnecessary body
movements.Weattachedam × ngridof stickers patternedwithQRcodes to
the chests of the subjects to create high-contrast and trackable regions of
interest. Modesty coverings were made available to all subjects, irrespective
of sex, and two participants (S04 and S05) opted to use themduring the data
acquisition. For these two subjects, stickers were not applied to the areas
coveredby themodesty garments.Thedata acquisition systemconsistedof a
smartphone (iPhone 13 Pro, Apple Inc, Cupertino, CA) capturing chest
video at 60 frames per second (fps) and 3840 × 2160 pixel resolution. To
minimize phone vibrations, a holder was employed to maintain the
smartphone in a stationary position with the back camera directed at the
subject’s chest (Fig. 1a), and a Bluetooth remote control initiated and
stopped recordings. Simultaneously, single-lead ECG data was acquired
using a data acquisition system (416, iWorx Systems, Inc., Dover, NH). A
microphone connected to both the data acquisition system and smartphone
provided audio timestamps at the beginning and end of each recording.
These timestamps were used during the data analysis to synchronize the
video and ECG data. Data was recorded during two 15-s breath-hold
maneuvers: one at end-inhalation, the other at end-exhalation.

Vision-based multichannel SCG
The objective of this study was to leverage computer vision techniques to
extract a multichannel SCG map from chest video recordings. To accom-
plish this, we initially used a deep learning object detector, specifically You
Only Look Once v7 (YOLOv7)26, to identify the initial location of the
stickers on the chest in the first frame of the video. The object detection
model was trained on a custom dataset of QR codes, which included two
classes: (1) QR codes and (2) the gap between two adjacent QR codes
enclosed by theQR code borders. The second class was included to improve
the performance of the object detector after we observed instances in which
themodelmistakenly identified these regions asQRcodes.After the training
phase, the model’s performance was evaluated on the first frame of the
videos recorded from the first 14 subjects under both breath-holding con-
ditions aswell as a third video captured fromeach subject (these third videos
were not used in the rest of this study). These frames, unseen by the model
during training, resulted in a total of 42 images with 2684 labels. The overall
performance of themodel is presented in Table 1 and Fig. 1b. Precision and
recall values in Table 1 are calculated using the best confidence score of
85.4%. The high mean average precision score indicated the high precision
of the model in detecting stickers, demonstrating the effectiveness of the
training process. The confusion matrix in Fig. 1b is generated using a
minimum confidence score of 25% and a minimum IoU threshold of 45%,
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which indicates that the model had a perfect score of 1.00 for correctly
identifying both classes. Furthermore, the last row of the confusion matrix,
i.e., the background FN, shows that the model did not miss any objects in
either of the two classes to consider them as background objects. However,

there were instances of false positives where the model misclassified certain
background objects, such as the ECG electrodes and nipples, that did not
belong to either of the target classes. We added a filter to our algorithm to
remove these false positives. During testing, the model took 11.2ms for
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Fig. 1 | Vision-based multichannel seismocardiography (SCG) acquired by an
ordinary smartphone camera. a Chest videos of 14 subjects were recorded during
breath-hold maneuvers at end-inhalation and end-exhalation while a grid of pat-
terned stickers was attached to their chest. b An object detection model was devel-
oped to determine the location of the patterned stickers in the first video frame.
Consent was obtained for publication of the subject’s chest photograph. c Target
tracking and sub-pixel refinement were used to determine the displacement of the
sticker grid frame by frame. SCG signals in the right-to-left and head-to-foot
directions were then calculated from these displacement signals. d Examples of
m × n (=6 × 6) SCG grids. The right-to-left and head-to-foot SCG signals were
plotted in blue and green colors, respectively. The magnified inset shows the SCG

segments corresponding to cardiac cycles and their ensemble average (the darker
segment). e To enhance the resolution of the multichannel SCG, two deep learning
models were developed: one to interpolate the signals between two adjacent hor-
izontal SCG signals (an example of the training sample for thismodel is shown in the
red box), and the second one to interpolate the signals between two adjacent vertical
SCG signals (a training sample is shown in the green box). f The architecture of the
model for SCG grid resolution enhancement. g Examples of enhanced-resolution
(2m−1) × (2n−1) SCG grids. The signals in the green boxes were predicted from the
adjacent red boxes (either horizontal or vertical). The signals in the yellow boxes
were predicted from the two adjacent horizontal green boxes.
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inference, 1.5 ms for non-maximum suppression, and a total of 12.7ms per
640 × 640 image at a batch size of 32.

Upon identifying the sticker locations in the first frame of each video,
we utilized a template tracking algorithm to track their movements across
the subsequent video frames27. Our template tracking algorithm provided
the sticker positions at the pixel level as integer values. However, precise
vibration measurement needed location information at the sub-pixel level.
Therefore, a sub-pixel localization refinement technique was applied to the
output of the template tracking algorithm (Fig. 1c)28. Figure 2 displays the
extracted sticker motions for one of the male subjects. To further aid in the
visualization of these subtle displacements, they were magnified with an
amplification factor of 20. Subsequently, the SCG signals associated with
every sticker location were calculated from the displacement signals. These
SCG signals were then normalized and segmented into cardiac cycles using
ECG R peaks determined by the Pan–Tompkin algorithm29,30. Figure 1d
shows the acquired 6 × 6 grid of SCG signals after pre-processing for subject
3 during breath-hold at the end of exhalation. The blue and green wave-
forms display the SCG signals in the right-to-left and head-to-foot direc-
tions, respectively. In these figures, the ensemble average SCG signals are
shown in darker blue and green colors. These results qualitatively demon-
strate that SCG signals differ depending on where they aremeasured on the
chest surface. Multichannel SCG grids for other subjects showed similar
SCG variations (see Supplementary 1–14).

SCGmap resolution enhancement
The extracted SCG grids can provide a general overview of the cardiac
activity. However, a higher-resolution grid can offer more detailed insights,
particularly to analyze SCG spatial variations and propagation across the
chest. Thus, we developed a deep learning convolutional neural network
(CNN) to spatially interpolate the chest vibrations, enhancing the resolution
of the SCG grids from m × n to (2m−1) × (2n−1). The architecture of the
CNN model is shown in Fig. 1f.

We separately trained two versions of this model for interpolating the
SCG signals in the right-to-left and head-to-foot directions. Data from the

first 14 subjects were randomly split into training (90%) and validation
(10%) sets. Data from the remaining three subjects (S15, S16, and S17)
formed the test set to evaluate the model’s performance on unseen subjects.
Table 2 presents the performance of the resolution enhancementmodels on
both validation and test datasets in terms ofmean squared error (MSE) and
root mean squared error (RMSE). For the validation data, the models
achieved an MSE and RMSE of 0.11 and 0.33, respectively, in the right-to-
left direction, and an MSE and RMSE of 0.04 and 0.20, respectively, in the
head-to-foot direction. The MSE and RMSE values were slightly higher for
the test data. When combining data from S15, S16, and S17, the MSE and
RMSE were 0.13 and 0.36 in the right-to-left direction, and 0.08 and 0.28 in
the head-to-foot direction. Supplementary Fig. 15 illustrates sample pre-
dicted signals for the right-to-left and head-to-foot direction models (blue
and greenwaveforms, respectively). These results showed that our proposed
interpolation models accurately interpolated SCG signals in both right-to-
left and head-to-foot directions.

Subsequently, these models were employed to predict chest vibrations
in the middle location of every pair of adjacent SCG signals, either hor-
izontally or vertically oriented. Figure1gpresents an exampleof interpolated
(2m−1) × (2n−1) grid of SCG signals in right-to-left and head-to-foot
directions, wherem = n = 6. The magnified inset displays a 3 × 3 portion of
these grids with signals in red, green, and yellow boxes. The signals enclosed
in the red boxes are the original SCG signals, extracted from the chest videos
by the proposed template tracking and sub-pixel refinement. The signals in
the green boxes are the predicted outputs, generated by the trained inter-
polation models using the adjacent horizontal and vertical pairs of the
original SCG signals (in red boxes) as input. However, this interpolation
pipeline alonewas not enough to predict the SCG signals at the center of the
four red-boxed original SCGs (i.e., yellow dots in Fig. 1e and yellow boxes in
Fig. 1g). To fill these gaps, the same interpolation models were used to
generate SCG signals from the horizontal pairs of the green-boxed signals.

Leveraging the enhanced-resolution SCG grids, time-varying chest
vibrations of the subjects were constructed using the ensemble average of
the SCGsignals at every chest location. Figure 3 shows the right-to-left and

Table 1 | Object detection model performance is evaluated
using precision, recall, and mean average precision (mAP)

Classes Precision (%) Recall (%) mAP@.5 (%) mAP@.5:.95 (%)

QR code 100 100 99.6 81.5

2QR areaa 99.4 99.9 99.6 80.5

All (mAP) 99.7 99.9 99.6 81.0

Precision and recall are calculated based on the best confidence score, which is 85.4%. The
mAP@.5 is computed at an Intersection over Union (IoU) threshold of 0.5. The mAP@.5:.95 shows
the mAP calculated over a range of IoU thresholds from 0.5 to 0.95, with a step size of 0.05.
a2QR area: area between two adjacent QR codes enclosed by the QR code borders.

Table 2 | Performance of the resolution enhancement models
on validation and test datasets

Data Subject no. Right-to-left Head-to-foot

MSE RMSE MSE RMSE

Val – 0.11 0.33 0.04 0.20

Test S15 0.14 0.38 0.07 0.27

S16 0.14 0.37 0.08 0.28

S17 0.07 0.27 0.08 0.29

S15+S16+S17 0.13 0.36 0.08 0.28

Training and validation data were taken from the first 14 subjects, with a random split of 90% for
training and10% for validation. Test datawasobtained from three newsubjects (S15, S16, andS17)
whose data were not included in the training phase. Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) were used as performance metrics for the model in two directions: Right-to-
Left and Head-to-Foot.
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Fig. 3 | Time-varying right-to-left and head-to-foot chest vibrations of a male
subject (S02) during one cardiac cycle. These maps were created using the
ensemble average SCG signals in the enhanced-resolution (2m−1) × (2n−1) grids,
where m = n = 6 for this subject. In the PDF version of this article, please click
anywhere on the figure or caption to play the video in a separate window.
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Fig. 2 | Sticker displacement visualization. The left panel shows a screenshot of the
original video and the electrocardiogram (ECG) signal recorded from one of the
male subjects (S03). The right panel shows the displacement of the stickers extracted
using template tracking and subpixel refinement. Fixed reference points are included
and the displacements are amplified 20 times for better visualization. In the PDF
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head-to-foot chest vibrations of Subject 2 for a cardiac cycle during
breath-hold at the end of exhalation. For the right-to-left vibration maps,
dark blue indicates more intense vibrations toward the right direction,
while dark red signifies more intense vibrations toward the left direction.
Similarly, for the head-to-foot vibration maps, dark blue represents more
intense vibrations toward the head direction, and dark red corresponds to
more intense vibrations toward the foot. Figure 4 shows selected frames of
thesemaps for all 14 subjects at specific time points of a cardiac cycle with
respect to the ECG fiducial points during breath-hold after exhalation.
Visual inspection of these data reveals that predominantly blue and pre-
dominantly red maps appear to occur around the same point in the car-
diac cycle with respect to the ECG reference across all subjects. This
pattern suggests potential correlationswith significant cardiac events such

as the opening and closing of the cardiac valves, blood ejection, and
ventricular filling. This observation not only raises questions about the
underlying physiological sources of these vibrations for further investi-
gation but also underscores the potential of our approach in providing
novel insights into the mechanics of the heart. Similar patterns were
observed in the vibration maps extracted from the data recorded during
breath-hold after inhalation (see Supplementary Fig. 16).

Although our study trained the model from scratch to tailor it speci-
fically to SCG signals, we recognize the potential benefits of fine-tuning. In
future work, we plan to explore fine-tuning strategies to further enhance
model performance. Additionally, conducting systematic ablation studies
will allow a better understanding of the impact of different components
within our model architecture.
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Vision-based heart-rate estimation
We developed an adaptive ECG-independent algorithm for HR estimation
from the vision-based SCG signals, HRv (Fig. 5a). A total of 1968 different
SCG signals were extracted from the chest videos of all 14 subjects.
Instantaneous HRv was calculated from all these signals in the right-to-left
andhead-to-foot SCGgrids for every subject. SupplementaryVideo 1 shows

the instantaneous HRv calculated from the head-to-foot SCG signal
extracted fromoneof the stickers for a sample subject (S03). The accuracy of
the algorithm, ϵ, was determined by comparing the average of the SCG-
based HR calculated from every chest location with the average gold-
standard HR, HRg, obtained from ECG data as ϵi;jð%Þ ¼
ð1� jHRi;j

v �HRg j=HRg Þ× 100, where ϵi,j is the accuracy of the HRv
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calculated from the SCG signal at the ith row and jth column of the m × n
SCG grid (where i ∈ {1,…, m} and j ∈ {1,…, n}). Figure 5b shows the ϵi,j

estimated from the signals in the right-to-left and head-to-foot SCG grids.
The more green represents the higher accuracy ϵ, the more red represents
the lower accuracy, and thewhite color represents anaccuracyof 80%.These
colormaps demonstrate that our adaptive algorithm accurately determined
HR frommost of the locations in the SCG grids. In most cases, ϵwas larger
than 90% which is shown with different shades of green. The lowest accu-
racywas obtained from two adjacent locations in the head-to-foot SCG grid
of Subject 6 recordedduringbreath-hold at the endof exhalation (ϵ5,3 = 78%,
ϵ5,4 = 79.5%). Agreement between HRv and HRg was determined using
Bland–Altman and Pearson correlation analysis. Figure 5c shows these
results forHRs extracted from right-to-left and head-to-foot SCGgrids. The
top rows in the gray and green boxes illustrate the agreement of the HR
estimations obtained fromall the locations in the SCGgrids (i.e., all stickers)
with the correspondingHRg. The bottom row shows the agreement between
the average HRv for every subject (¼ Pm

i¼1

Pn
j¼1 HR

i;j
v =ðm× nÞ) and the

HRg. These averageHRv values and their correspondingHRg are also listed
in Table 3. The bias or mean difference between the HRv and HRg ranged
from −0.15 to 0.15 bpm. HRs estimated from the head-to-foot chest
vibrationshad thenarrowest 95%confidence interval of (− 3.63, 3.34) bpm.
The correlation coefficient betweenHRv andHRgwas 0.96–0.99 (p < 0.001)
for different conditions. The Bland–Altman and correlation plots in the
right panel of Fig. 5c were generated using all data, i.e., right-to-left and
head-to-foot vibrations during breath-holds both after inhalation and
exhalation. This collective analysis of the data also suggests that our ECG-
independent HR estimation algorithm had high accuracy (bias ± 1.96 SD =

−0.02 ± 3.78 bpm). Our results suggested that the HR estimated from the
head-to-foot vibrations had a slightly higher agreement with the gold-
standard HR compared to the estimations from the right-to-left SCG grids.
In addition, while right-to-left vibrations underestimated the HR (bias > 0),
the head-to-foot vibrations overestimated it (bias < 0).

After assessing the accuracy of estimated HRs at different chest loca-
tions, this data was analyzed to identify the best inter-subject locations for
accuratemeasurementof vision-basedHR.First,we calculated themeanHR
estimation accuracy ϵi;jm for each location (i,j) across the data from all 14
subjects: ϵi;jm ¼ P

sϵ
i;j=Ns, where the index of summation s and Ns are the

subjects and number of subjects, respectively. These results are presented in
Fig. 5dmaps. A dark blue refers to a higher ϵm, while a white color shows an
ϵm of 90%. Next, for each location, we calculated the percentage of the
subjects whose HR estimation accuracy was larger than 95% (N95%). This
was done separately for the SCG-based HRs derived from the vibration
signals in right-to-left andhead-to-footdirections andduringbreath-hold at
the end of exhalation and inhalation, i.e., four different data sets. TheseN95%

values are reported as white numbers on Fig. 5d maps. Subsequently, an
accuracy index γ was calculated for each location in every data set as
γi;j ¼ ϵi;jm ×Ni;j

95%=100. Todeterminewhichdata set leads to amore accurate
HR estimation, we calculated an average accuracy index for every data set as
γ ¼ Pm

i¼1

Pn
j¼1 γ

i;j=ðm× nÞ. The average index γ was larger for head-to-
foot grids compared to the right-to-left grids: γhf ;ex ¼ 90:66%, γhf ;in ¼
82:09% vs. γrl;ex ¼ 75:81%, γrl;in ¼ 87:37%, where γrl,ex and γhf,ex denote
the accuracy indices for theHRs derived from the right-to-left and head-to-
foot SCG grids during breath-hold at the end of exhalation, and γrl,in and
γhf,in are similar accuracy indices calculated from the data recorded during

Fig. 5 | Heart rate (HR) estimation from the chest videos recorded by a smart-
phone camera. a An overview of the adaptive ECG-independent HR estimation
algorithm to extract HR from the right-to-left and head-to-foot SCG signals.
b Accuracy ϵ of the SCG-based HR compared to the gold-standard HR measured
using ECGRR intervals. HRwas not estimated from thewhite regions on the left and
right side of the chest of Subjects 4 and 5 since these subjects chose to wear modesty
coverings to cover these chest areas during the data acquisition. cBland–Altman and
Pearson correlation analysis. In the right-to-left and head-to-foot boxes, the plots on
the top row are constructed using the HRs estimated from all chest locations, i.e., all
nodes (QR codes) in the SCG grids, of all subjects. The plots on the bottom rowwere
created using, an average accuracy for every subject. These average accuracy values

were calculated for every subject based on the HR accuracy derived from all chest
locations. The plots in the right panel (green data) were constructed utilizing the
comprehensive dataset gathered from all participants' right-to-left and head-to-foot
vibrations, collectively. d Combined accuracy, ϵm and N95%. The N95% values are
displayed inwhite font for each chest location, while the corresponding ϵm values are
presented in a shade of blue. eHRaccuracy indices, Γ and γhf,ex. The regions enclosed
with dashed lines show the chest locations for accurate estimation of HR using the
proposed ECG-independent HR estimation algorithm and vision-based SCG sig-
nals. The Bland–Altman and correlation analysis on the right side illustrates the
accuracy of the HR estimations in these regions.

Table 3 | Gold-standard heart rate (HRg) and average vision-based heart rate (HRv) of the subjects during breath-hold after
exhalation and inhalation

Subject No. Breath-hold at the end of exhalation Breath-hold at the end of inhalation

HRg (bpm) HRv,rl (bpm) HRv,hf (bpm) HRg (bpm) HRv,rl (bpm) HRv,hf (bpm)

S01 51.86 52.28 ± 1.20 54.38 ± 0.72 57.00 55.29 ± 2.35 56.60 ± 0.43

S02 86.23 84.97 ± 0.58 83.33 ± 1.79 71.85 70.89 ± 0.13 71.27 ± 0.15

S03 62.94 64.57 ± 1.17 64.14 ± 1.03 62.12 63.44 ± 1.23 64.87 ± 1.90

S04 62.08 65.08 ± 2.86 62.53 ± 0.42 53.51 56.89 ± 0.86 56.53 ± 1.07

S05 75.16 75.53 ± 0.18 75.81 ± 0.19 68.08 67.79 ± 0.13 69.37 ± 1.48

S06 78.59 72.50 ± 3.80 74.45 ± 4.54 75.59 73.48 ± 1.85 70.98 ± 3.45

S07 66.88 67.47 ± 2.21 66.68 ± 1.27 60.09 61.98 ± 1.39 60.85 ± 2.06

S08 73.70 74.21 ± 0.17 73.54 ± 0.95 71.73 71.53 ± 0.38 71.54 ± 0.54

S09 70.14 70.78 ± 1.05 70.92 ± 0.34 68.16 68.07 ± 0.62 70.18 ± 1.06

S10 60.20 62.91 ± 2.55 62.30 ± 0.96 57.24 57.70 ± 0.45 58.70 ± 1.58

S11 52.59 54.51 ± 1.91 52.19 ± 0.41 48.40 48.46 ± 2.52 49.43 ± 0.70

S12 77.13 73.92 ± 3.52 76.62 ± 1.93 67.40 67.62 ± 0.73 68.33 ± 1.66

S13 81.90 79.10 ± 2.70 80.94 ± 2.14 68.14 67.80 ± 0.27 69.12 ± 1.13

S14 75.52 72.23 ± 2.56 74.29 ± 3.22 69.74 69.16 ± 1.88 70.24 ± 1.16

HRv,rl and HRv,hf (mean ± standard deviation) are calculated from them × n SCG grids in the right-to-left and head-to-foot directions, respectively.
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breath-hold at the end of inhalation. Finally, to determine the best inter-
subject chest location for HR estimation, an accuracy index Γi,j was calcu-
lated for every chest location (i,j) by combining the indices calculated for the
two head-to-foot data sets as i;j ¼ ðγi;jhf ;ex þ γi;jhf ;inÞ=2. Figure 5e shows the
accuracy indices for the chest region of interest in this study. This map aids
in identifying the optimal location on the chest surface forHRmeasurement
using our proposed vision-based method. The areas highlighted in blue
indicate regions of the highest accuracy. These results suggest that vision-
based HR estimated from the chest regions enclosed by the midclavicular
lines, sternal angle, and the fifth rib had the highest accuracy index (Γ > 90%
and γhf,ex > 98%). These regions are shown by black dashed line in the Γ and
γhf,ex maps of Fig. 5e. In this region, the estimated HRv from head-to-foot
vibrations during breath-hold at the end of inhalation and exhalation col-
lectively had a bias of −0.17 bpm (1.96 SD: 2.71 bpm) and correlation
coefficient of 0.99.Also, the estimatedHR fromthehead-to-foot vibration at
the end of exhalation had a bias ±1.96 SD of 0.04 ± 2.14 bpm.

SCG spatial variations
The established inter- and intra-subject variability of SCG signals have been
extensively documented in previous studies4,5,31. Our innovative multi-
channel SCG acquisition method presents a practical and cost-efficient
means to explore spatial variations in SCG. Illustrated in Fig. 6a, b are
examples of SCG grids extracted from chest videos. The presented results
showcase only the ensemble averages of the SCG segments. These findings
portray the dynamic nature of SCG signals as measurement locations
progress downward from the upper region of the chest. Focusing on the
right-to-left vibrations, taking the sixth column (c6) as an example, the SCG
peak located at the end of the darker segment of the signal shifted leftward
whenmoving from the first row to the sixth row. Also, the SCG peak in the
middle of the cyan segment in the initial row gradually shifted towards the
end of the cyan segment by the sixth row. These two changes led to a wider
valley between these two peaks in the cyan segment. Similar intra-subject
variability was observed in the signals when the measurement location on
the chest moved laterally. Other examples of intra-subject SCG variations
are depicted in Fig. 6c, including variability in the timing, magnitude, and
number of signal features in a particular period of the cardiac cycle. For
example, in the green magnified inset, the signal in the first column
exhibited two localmaxima,whereas the signal in the sixth columnhadonly
a single maximum.

To evaluate the intra-subject variability across all subjects, we com-
pared signals extracted from the second to the sixth rows (r2–r6) of the SCG
grids with the signal from the first row (r1) of the corresponding column.
The mean squared difference (MSD) of these signals is depicted in the top
panel of Fig. 6d (row-wise comparison). The construction of this plot
involved aggregating data from all subjects. For both the right-to-left and
head-to-foot SCGgrids, theMSDbetweenr2 and r1was the smallest.As one
moved vertically from r2 to r6, the MSD progressively increased, with r6
compared to r1 exhibiting the highest MSD. These results highlighted a
greater signal variability in the right-to-left vibrations compared to thehead-
to-foot vibrations. Specifically, for the right-to-left grids, the median MSD
escalated from 0.03 (r2 vs r1) to 0.35 (r6 vs r1), while for the head-to-foot
grids, it only shifted from 0.02 to 0.11. Moreover, in the right-to-left grids,
the interquartile range expanded from 0.02 (r2 vs r1) to 0.22 (r6 vs r1),
whereas in thehead-to-foot grids, the increasewasmoremodest, rising from
0.02 to 0.09.

Furthermore, a column-wise analysis was performed to evaluate signal
variations as the measurement location moved farther from the heart,
specifically toward the right side of the chest. This comparison involved
calculating theMSDbetween the signals and their respective counterparts in
the sixth column (c6). As illustrated in the lower panel of Fig. 6d, the results
indicated a greater signal variability in the right-to-left SCG grids compared
to the head-to-foot vibrations.

In addition to these row-wise and column-wise comparisons, each
SCGgrid’s signalswere also comparedwith a reference SCGsignal extracted
from the sticker(s) situated at the top-middle, approximately positioned on

the manubrium of the subjects. Figure 6e shows the normalized MSD
(NMSD) between the SCG signals and the reference signal. Overall, the
NMSD increased with the distance from the measurement location to the
manubrium. Specifically, the NMSD showed a greater magnitude, i.e.,
higher signal variations, in the lower rows of the right-to-left grids. Con-
versely, in the head-to-foot grids, larger NMSD values were observed in the
lateral columns. These findings also demonstrate the inter-subject varia-
bility of the SCG variations.

Discussion
In this work, we established the feasibility of a novel multichannel SCG
acquisitionpipeline by extracting SCGsignals fromchest videos recordedby
ordinary smartphones. This work builds on our earlier work in which we
validated our method by comparing the vision-based SCG signals with the
gold-standard signals recorded by industry-grade accelerometers attached
to the chest skin25. The results of this work showed that right-to-left and
head-to-foot SCG signals vary in a reproducible, cyclical nature during the
cardiac cycle. Given the continuous, complex movement of the heart, SCG
signals are influenced by various mechanical factors4,5. For instance, the
movements of the heart are not only the events of the cardiac cycle such as
the opening and closure of the cardiac valves, but also rotationalmovements
caused by the shortening and twisting of the spirally arrangedmuscle fibers
of the ventricles. Other thoracic vibrationsmay be caused by cardiovascular
activities outside the heart, such as the filling and contraction of the aorta
during systole and diastole. But what events in the cardiac cycle or blood
flow within the chest most contribute to these chest surface vibrations? To
interpret the SCGsignals, we investigated their correlationwith ECG signals
and thus events of the cardiac cycle. Another key to interpreting the SCG
events in this study is the relativemagnitudes of the vibrations as detected by
SCG in the lateral (i.e., right-to-left) and longitudinal (i.e., head-to-foot)
directions.

The events of the cardiac cycle and their correlation with ECG
waveforms were first described by Wiggers in the early twentieth
century32. For this study, ECG tracingswere simultaneously recordedwith
the chest videos. Thus, SCG signals obtained from the chest videos can be
interpreted, in part, by their correlation with known events in the cardiac
cycle as determined from corresponding ECG deflections. SCG, like
echocardiogram, ECG, or other cardiac investigation techniques, may
provide both intrapersonal information over time (such as information
about the progression of heart failure in an individual patient)13,33 and
interpersonal information that can be generalized across patients. For
participants in this study, there were similar SCG patterns detected at the
same time in the cardiac cycle across subjects. For example, a moderate
lateral chest vibration was observed toward the end of the ECG PQ
interval inmost of the subjects (bluemaps between P andQ in Fig. 4a and
Supplementary Fig. 16a). These lateral vibrations aremore intense during
the breath-hold at the end of inhalation. To interpret these events, a brief
review of the ECG timing and intervals is helpful. The cardiac cycle begins
with the firing of the sinus node that results in the first ECG deflection
known as the P wave. The P wave represents the right and left atrial
contraction and ejection of the blood into the respective ventricles. The
subsequent isoelectric PQ time interval provides enough time for the
ventricles to fill with blood. Both actions, atrial contraction and blood
flow, cause vibrations on the chest wall. The direction of the blood flow is
at a shallow angle from top right to bottom left. This can be observed as the
blue maps between P and Q in the lateral vibrations.

As another example, the head-to-foot SCGmaps of themajority of the
subjects in Fig. 4b had a large magnitude toward the foot direction (i.e., red
color) during the ECG QRS complex. The QRS deflection depicts the
electrical wavefront propagation that captures and depolarizes both ven-
tricles. During this period, ventricles contract and generate pressure to close
the mitral and tricuspid valves and open the aortic and pulmonary valves.
This period is known as the isovolumic contraction (the ECG RS segment).
Vibratory events during this segment involve muscle contraction and valve
opening and closure.

https://doi.org/10.1038/s44325-024-00034-6 Article

npj Cardiovascular Health |             (2025) 2:1 8

www.nature.com/npjcardiohealth


The most consistent and dramatic example of similar intersubject
findings was noted in the ECG cycle near the beginning of the ST segment,
reaching a maximum intensity near the segment of the ECG known as the
“J-point” (ST1 in Fig. 4). Near the ECG J-point, for all subjects, the mag-
nitudeof the SCGsignalwas greatest in the longitudinal orientation,moving
towards the head (blue maps in Fig. 4b). This point in the cardiac cycle
temporally relates to events including aortic valve opening and rapid ejec-
tion of blood from the left ventricle into the ascending aorta and from the
right ventricle into the pulmonary artery. The direction of the blood flow is
from the bottom left to top right at a steep angle. Also, ventricular pressure
reaches their near-maximum values at the end of the ST segment. Another
intersubject SCG consistencywas noted during the rising inflection of the T

wave and until the peak of the Twave. Events in this part of the cardiac cycle
include reduced ejection into the aorta and pulmonary artery. It is note-
worthy that the direction of blood flow undergoes a shift as it enters the
descending aorta from the aortic arch, following its entry into the ascending
aorta. This directional change contributes to the observable alteration in the
head-to-foot chest vibrations between the S and T waves, as depicted in
Fig. 4b, where the color transition from blue to red maps indicates this
substantial variation.

In addition to intersubject consistency, SCG can provide subject-
specific information, as demonstrated by Fig. 3 for a sample subject. In
addition to the large amplitude vibrationmentioned above that occurred for
all subjects and can also be demonstrated in the video, the video provides
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Fig. 6 | SCG spatial variation on the chest. a, b Ensemble averages of the right-to-
left and head-to-foot SCG signals extracted from Subject 3's video recorded during
breath-hold at the end of exhalation. c Examples of intra-subject variations include
variations in the amplitude, timing, and number of the signal features, e.g., signal
peaks. d (top panel) Mean squared difference between the signals in the second,
third, fourth, fifth, and sixth (r2–r6) rows and the corresponding signals in the first

row (r1) of the SCG grid generated using the data from all subjects, collectively;
(bottom panel) Mean squared difference between the signals in the first, second,
third, fourth, and fifth columns (c1–c5) and the corresponding signals in the sixth
column (c6) of the SCG grid. e Normalized mean squared difference between the
signals in the SCG grid and a referenced signal extracted from the sticker(s) on the
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additional information that likely corresponds to other key events in the
cardiac cycle. Furthermore, SCG signals can provide insights into various
cardiac events based on the orientation of the heart with respect to the SCG
measurement locations anddirections, i.e., right-to-left or head-to-foot.The
heart lies diagonally in the thoracic cavity with the base pointing superiorly
and posteriorly towards the right shoulder and the apex pointing down-
ward, to the left, and slightly anteriorly. In the coronal view, the anatomical
axis of the heart lies roughly 35 ± 10° relative to the horizontal axis of the
body34,35. Thus, vibrations generated by mechanical activities of the heart
that are aligned with the axis of the heart, such as the closure of the atrio-
ventricular valves, would be expected to generate simultaneous longitudinal
and lateral SCG amplitudes. In contrast, mechanical activities that aremore
vertically oriented, such as the closure of the aortic valve or flow into the
aorta, would be expected to generate minimal lateral vibrations but rather
primarily vertical vibrations. For example, at 14–15 s in Fig. 3, the large
amplitude signalmentioned above that occurs at roughly the ECGRpeak is
likely sensed with movements toward the head and with concomitant
rightward deflection in the lateral chest locations, as might be expected for
vibrations proceeding along the anatomical coronal axis of the heart. This
SCG pattern is likely caused by the closure of the atrioventricular valves,
which is consistent with the information derived from both temporal
relationship within the cardiac cycle as determined by ECG and the rela-
tively large amplitude chest vibrations in the lateral and longitudinal
directions. At 26–28 s, blood ejection into the ascending aorta and blood
flow into the descending aorta generate a large amplitude signal in the head-
to-foot SCG maps. Here, a large amplitude SCG component is measured
toward the feet, while there are relatively low amplitude signals in the lateral
directions, suggestive of anatomical structures more vertically oriented.
These SCG patterns were also observed for other subjects and are shown
with the mostly red maps in Fig. 4b around ST2-T location. These SCG
fluctuations and those around the ECG J-point are the largest amplitude
signals noted across subjects, which correspond to the opening of the aortic
valve and rapid ejection phase. Another significant SCG finding in Fig. 3
occurs at 10–12 s, with both relatively largemagnitude leftward and inferior
vibrations noted towards the beginning of the ECGQR segment. Thus, the
SCG likely captured the atrial contraction concluding with the mitral valve
closure, which would be expected to proceed diagonally downward in a
right-to-left pattern, and this is indeed demonstrated by the detected
vibrations. These findings suggest that a multichannel SCG approach can
provide information about cardiovascular events basedon the orientationof
different parts of the cardiovascular system.

The fact that aortic valve dynamics could be tracked based on the chest
vibration maps in this study can open the door for developing a non-
invasive method for diagnosing valvular heart conditions. For example, in
patients with aortic regurgitation, aortic valve closure is delayed while in
patients with aortic stenosis, the valve opening is delayed due to the nar-
rowing or stenosis. Hence, further analysis of relationships between SCG
and ECG may focus on the correlation between these vibration maps and
valvular diseases. In addition, such analysis may allow serial monitoring of
cardiac parameters such as QT intervals on the ECG, solely based on the
proposed video-based method. Such information is potentially useful for
monitoring the QT-prolonging effects of drugs that are prescribed in clinic.
QT prolongation can be progressive over days and result in vulnerability to
fatal arrhythmias. In addition, correlations between SCG, ECG, and echo-
cardiographic data can potentially lead to SCG-based methods to monitor
valve closure and valve insufficiency. Gallop rhythms due to third and
fourth heart sounds are clues to worsening heart failure. Similarly, the
appearance of SGR signals due to mitral or tricuspid valve regurgitation,
whether by comparison to other patients or on serial SCGs from an indi-
vidual patient, could be used together with other data (e.g., daily weights or
pulmonaryarterypressuremeasurements froman implantedCardioMEMS
HF SystemTM) to optimize out-patient management. The non-invasive and
low-cost features of the proposed SCG system are attractive for future
developments, whether the system is used as a standalone method or in
conjunction with other monitoring systems in the outpatient environment.

Importantly, multichannel SCG maps would be analyzed by the patient’s
smartphone so that unprocessed chest videos (large data files) would not
require transmission from the patient’s smartphone to a central processing
facility.

Our method demonstrated a robust correlation coefficient exceeding
0.98 withHR, positioning it as an attractive widely-accessible alternative for
HR monitoring. This promising correlation suggests potential applications
in diagnosing tachycardia-related issues, particularly in patients experien-
cing palpitations. However, this high correlation was observed in healthy
subjects exhibiting sinus rhythm. In cases of patients with atrial fibrillation
and varying myocardial contraction strength, it is conceivable that the HR
correlation might be weaker. On the other hand, patients with supraven-
tricular reentry tachycardia will have a consistent regular myocardial con-
traction that should lead to stable chest motion. This stability can be
accurately detected and utilized to calculate HR reliably in such cases. The
implications of our method may therefore vary depending on the cardiac
conditions under consideration.

Withamultichannel SCGsystem, itmaybepossible to evaluate left and
right ventricular function. Deriving the heart rate and ventricular stroke
volumeswould be particularly helpful for non-invasively estimating cardiac
output. Serialmeasurements of cardiac output that aremade asmedications
are changed represent an important advance over current practice. More-
over, SCG recordings could diminish the frequency of outpatient encoun-
ters that physicians currently require to monitor the effects of changes to a
patient’s therapeutic regimen.

While our current vision-based multichannel SCG method provides
valuable insights into the patterns of the right-to-left and head-to-foot chest
vibrations, it is unable to measure the dorsoventral component of the SCG
signals, which iswidely usedand referred to in the literature5. This limitation
arises from the fact that RGB video cameras can only capture 2D dis-
placement information of the stickers in the chest plane. In the future, we
plan to explore potential solutions to measure dorsoventral SCG using our
method. In addition, the proposed vision-based method may be used to
calculate gyrocardiograms (GCGs), i.e., the angular velocity of the thorax
associatedwith cardiovascular activities, using the axial displacements in the
right-to-left and head-to-foot directions. Future studies may evaluate the
effectiveness of this method by comparing the vision-based GCG signals
with those obtained by gold-standard sensors. Moreover, Fig. 4b demon-
strated the intersubject similarity of SCGpatterns in specific time periods of
a cardiac cycle of an ECG waveform. Future studies may employ gold-
standard imaging modalities, such as echocardiography, to pinpoint what
exact cardiac events occur in theseperiods.Thiswill alsopave theway for the
extraction of other important cardiac parameters and time intervals such as
the stroke volume, pre-ejection period, left ventricular ejection time, and
electrotechnical systole.

Finally, in this study, ourmethod was tested on 17 healthy individuals,
with data from 14 subjects used to develop the vision-based algorithm and
data from the remaining subjects employed for training and testing deep
learningmethods.While this provides a solid foundation for evaluating the
feasibility of our approach, the study was limited to individuals without
previous CVDs, which restricts the immediate generalizability to broader
populations, especially those with varying cardiac conditions. Furthermore,
since our method employs a template tracking approach to determine
displacement, its accuracy may be affected by the distance between the
camera and the chest. Greater distances can reduce the resolution and detail
of the stickers, leading to less precise tracking. The camera should ideally be
positioned perpendicular to the chest surface, as an angled view can intro-
duce interference between signals in different directions. Additionally,
variations in lighting and smartphone models can influence the general-
izability of our results. Future studies will be essential to validate the
approach on more diverse populations in terms of age, body composition,
and underlying cardiovascular conditions, as well as to investigate the
impact of environmental factors on generalizability.

In summary, we presented a cost-effective method for multichannel
SCGacquisition.Utilizing computer vision anddeep learning,wedeveloped
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a novel solution for extracting SCG grids from the chest videos recorded by
ordinary smartphone cameras and found potential correlations between
these grids and important cardiac events such as cardiac valve dynamics and
blood flow ejection into the aorta. Furthermore, we developed and tested a
deep-learning model to increase the resolution of the multichannel SCG
grids, providing a more detailed view of the cardiovascular-induced chest
vibrations. Our pipeline also included an innovative ECG-independent
algorithm for heart rate detection from these vision-based SCG signals. The
findings of this study highlighted the potential of our approach in creating
an affordable and accessible cardiacmonitor leveraging thewide availability
of smartphones.

Methods
Multichannel SCG from chest videos
Target area detection: In this study, we affixed a grid of stickers patterned
with QR codes to the chest surface of the subjects. The use of stickers was
beneficial because it provided the intensity variation needed for the target
tracking model to reliably track subtle chest motions36. These patterns
provided distinct features to track throughout the video frames, facilitating
the extraction of sticker displacements and SCG signals. The first step in our
pipeline for capturing multichannel SCG involved the detection and loca-
lization of these stickers in the initial frame of the recorded videos. To
accomplish this, we utilized YOLOv726, a single-stage real-time deep
learning-based object detection algorithm to process the first frame of the
video and output the detected stickers along with their bounding boxes.
YOLOv7 incorporates various techniques, such as extended efficient layer
aggregation network, model scaling, and trainable bag-of-freebies, to
enhance its performance compared to its predecessors. YOLOv7 was
trained onQRcodes using a custom-built labeled dataset comprising 10,713
images. This dataset was a combination of an online dataset37 and a dataset
of annotated QR codes from chest videos of three additional subjects (S15,
S16, and S17). Similar to the main 14 subjects, we also attached a grid of
stickers to the chest of these subjects and videotaped their chest vibrations.
This additional data ensured that the model learns from a diverse range of
QR code images, including both publicly available data and specific samples
captured during our data acquisition process. Since the stickers were placed
close to each other on the chest in our experiments, there were instances
when the object detection model detected the boundary regions of two
adjacent stickers as a QR code. To avoid these misdetections, we defined an
additional class by annotating the boundary regions of the two adjacent QR
codes. Consequently, the model was trained on two classes: the QR codes
and the boundary regions of two adjacent QR codes. For the training pro-
cess, themodel was initialized from a pre-trainedmodel that was previously
trained on the COCO dataset. The training was conducted for 100 epochs,
completed in 7.14 h, using a batch size of 32 and an image size of 640 × 640

pixels. The Adam optimizer was used with an initial learning rate,
momentum, and weight decay of 0.01, 0.937, and 0.0005, respectively.

Templatematching: Once the initial locations of the stickers in the first
frame of the videowere identified by the object detector, templatematching
was employed to track the motion of each sticker across subsequent video
frames. The algorithm begins by defining a template that captures the
essential characteristics and appearance of the object. It then compares the
reference template with different regions of an image or frames in a video
sequence. The goal is to find the regions that most closely match the tem-
plate, indicating the object’s presence and location. This is achieved by
sliding the template over the image and determining the location with the
highest similarity between the template and the overlapped region of the

image. In this study, the templates were defined by the bounding boxes of
the stickers in the first frame determined by the object detector.

Assume that a total ofK stickerswere attached to the subject’s chest and
were defined as qrk ¼ ððxtk; ytkÞ; ðwk; hkÞÞ, where ðxtk; ytkÞ was the top-left
corner and (wk, hk) was the width and height of the kth sticker (k ∈ {1,…,
K}). These K stickers were eventually mapped into a m × n grid based on
their respective position on the chest. Now assume that all K stickers were
correctly detected in the first frame, i.e., at t = 0, by the object detector. Let
T = (T1,…,TK) be the set ofK templates as definedby theboundingboxes of
the stickers,with the size ofTkbeingwk × hk. For each template, the template
tracking algorithm then involved sliding a window, sized according to the
template, over the entire video frame. It then calculated the similarity
between the template and each region of the frame, identifying the region
with the highest similarity index.

Searching for K stickers in a high-resolution image is computationally
expensive, particularly when every template is slid over the entire image.
Given that the videos were captured under controlled conditions with
minimal chest movements, we assumed the stickers had only subtle dis-
placements, mainly due to the cardiovascular-induced chest vibrations.
Therefore, to reduce the computational cost, we defined a region, slightly
larger than the template in the first frame, as the search region to locate the
template in subsequent frames. Let I(x, t) be the video frame at time t, where
x = (x, y) contained the pixel coordinates. Let assume Ik(x, t) was the search
region of sizeWk ×Hk for the corresponding templateTk at time t. For each
template Tk, we slid a windowwith the size of Tk over Ik(x, t) andmeasured
the similarity between Tk and the overlapped region on the Ik(x, t). The
similarity was determined using the normalized cross-correlation coeffi-
cient, ρ. By identifying the sliding window position with the highest simi-
larity score, we found the best match for every template Tk in every video
frame, indicating the object’s location in that video frame. This process
enabled tracking themotion of every sticker throughout the video sequence.

SCG calculation: The template matching algorithm provides the
object’s position with pixel-level precision. However, the exact position of
the stickers in each frame may involve fractional pixel values. Therefore, a
sub-pixel registration techniquewas used to further enhance the accuracyof
our sticker tracking. For this purpose, a quadratic polynomial surface was
fitted to the intensity values within a 3 × 3 pixel region centered around the
pixel with the maximum ρ (Fig. 1c). It is worth noting that while using a
larger region for curve fitting may yield more accurate estimations, it
increases the computational cost. The quadratic surface equation resulting
from the fitting of these nine points can be expressed as f(x,
y) = a0+ a1x+ a2y+ a3x

2+ a4xy+ a5y
2, where a0,…, a5 represent the six

unknown constant coefficients of the quadratic surface. To estimate these
constants, a pseudo-inverse computation was performed after substituting
the nine points into the quadratic surface equation as

where (xmax, ymax) are the coordinates of the maximum ρ. Once the coef-
ficients a0,…, a5 were obtained, the extreme point of the quadratic fitting
surface was determined using ∂f(x, y)/∂x = 0, and ∂f(x, y)/∂y = 0 as
xsub ¼ ð2a1a5 � a2a4Þ=ða24 � 4a3a5Þ, and ysub ¼ ð2a2a3 � a1a4Þ=
ða24 � 4a3a5Þ, where (xsub, ysub) represents the optimal sub-pixel position of
the maximum ρ.

Upon applying the template matching algorithm and refining the sub-
pixel localization for each frame, we obtained the sub-pixel coordinates of
the upper-left corner of each sticker frame by frame. The relative dis-
placement of each detected sticker between the current frame I(x, t) and the
first frame I(x, t0) in right-to-left andhead-to-foot directionswere calculated
as dxtk ¼ xtk � xt0k , and dytk ¼ ytk � yt0k , where dx

t
k and dytk represent the

f ð�1; 1Þ f ð0; 1Þ f ð1; 1Þ
f ð�1; 0Þ f ð0; 0Þ f ð1; 0Þ
f ð�1;�1Þ f ð0;�1Þ f ð1;�1Þ

2
64

3
75 ¼

ρðxmax � 1; ymax þ 1Þ ρðxmax; ymax þ 1Þ ρðxmax þ 1; ymax þ 1Þ
ρðxmax � 1; ymaxÞ ρðxmax; ymaxÞ ρðxmax þ 1; ymaxÞ

ρðxmax � 1; ymax � 1Þ ρðxmax; ymax � 1Þ ρðxmax þ 1; ymax � 1Þ

2
64

3
75 ð1Þ
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displacements in the right-to-left and head-to-foot directions, respectively,
for the kth sticker. ðxt0k ; y

t0
k Þ is the coordinates of the kth sticker in frame I(x,

t0), while ðxtk; ytkÞ represents the coordinates of the same sticker in frame I(x,
t). To calculate the acceleration (i.e., SCG signal) from the displacement
signal, we used the central difference method, which provides a balance
between accuracy and noise sensitivity. In this method, the derivative is
calculatedbyconsidering the slopebetweenneighboringdatapoints onboth
sides. The velocity and acceleration signals were calculated as v(t) = [d(t+1)
−d(t−1)]/2. Δt, and SCG(t) = [v(t+1)−v(t−1)]/2. Δt, where d and v
represent thedisplacement andvelocity, andΔt is the time step betweendata
points.

Cardiac cycle segmentation: Each subject’s ECG was recorded simul-
taneously with the chest videos. While the vision-based SCG signals were
captured at 60 fps, theECGsignalswere recorded at a sampling frequencyof
5000Hz. Therefore, to align the SCG signals with the ECG signals, the
signals were resampled to 5000Hz using linear interpolation. This process
also helped make a smoother SCG signal by reconstructing the missing
features without losing information in either time or frequency. We then
applied a band-passfilter (1–30Hz) to the SCGsignals. To segment the SCG
signal into cardiac cycles, we followed a method similar to our previous
work25. Specifically,wedefinedawindowsize basedon the averageheart rate
calculated from the ECG signal. Thewindow started 1/4 of the average heart
rate before each R wave. After segmenting the SCG signals, we further
resampled each segment to a fixed number of sample points (5000 points in
this study). This consistent segment length across all subjects ensured
uniform input sizes for our CNN model.

SCG grid resolution enhancement using CNN
After extracting SCG from each of the K stickers, we mapped these signals
onto a m × n grid, corresponding to their specific positions on the chest.
Subsequently, we implemented a deep learning model composed of a 1D
CNN and a multilayer perceptron (MLP) network to enhance SCG grid
resolution to (2m−1) × (2n−1). The CNN model processed two SCG sig-
nals derived from them × n grid as input, whereas theMLPnetwork utilized
the position information of stickers relative to a reference point (left nipple)
as its input. Each of thesemodels generated a feature vector. The two feature
setswere then combined topredict the SCGat themidpoint between the two
known signals. The architecture and data flow of the model is illustrated in
Fig. 1e–g.

Network architecture: The CNNmodel had five convolutional blocks.
The first four blocks contained two Conv1D layers, each followed by batch
normalization and ReLU activation layers. The Conv1D layer applied 1D
convolution operations to the input data, extracting relevant features and
capturing spatial patterns. The batch normalization layer normalized the
output of the Conv1D layer, aiding in stabilizing and accelerating the
training process by reducing internal covariate shift38. The ReLU activation
layer introduced non-linearity to the network. The kernel size, stride, and
padding parameters for the first convolutional blocks were set to 5, 1, and 2,
respectively. For the rest of the convolutional blocks, these parameters were
set to 3, 1, and 1. The last convolutional block contained one Conv1D layer
only followed by a ReLU activation layer and flattening. Additionally, an
MLP network incorporated the lateral and longitudinal distance informa-
tion of each sticker from a reference point. It consisted of two fully con-
nected units, each comprising a linear transformation followed by a ReLU
activation layer. The outputs of the CNN and MLP networks were con-
catenated and processed by a sequence of two fully connected layers. The
first one applied a linear transformation to the concatenated input, followed
by a ReLU activation layer, while the second layer was responsible for
regressing and interpolating the output signal.

Dataset: After pre-processing and segmenting the data into cardiac
cycles from all subjects, we created two datasets of SCG signals: one con-
sisting of the right-to-left SCG signals and the other using the head-to-foot
signals. The dataset was divided into training, validation, and testing sets.
The training and validation data were created from the first 14 subjects and
randomly split into 90% and 10%, respectively. The test data were taken

from the remaining three subjects (S15, S16, and S17). Each sample in the
datasets was constructed by considering SCG signals extracted from three
adjacent stickers and their corresponding distance from a reference point
(Fig. 1e). To generate these datasets, two sliding windows of size 1 × 3 and
3 × 1 were employed and successively slid horizontally and vertically across
them × n stickergrid, allowing for the collectionof every threeadjacent SCG
signals and their lateral and longitudinal distance from the reference point.
Within each window, the SCG signals from the first and third stickers, and
the distance information of all three stickers formed a sample input for the
training. The SCG signal from the middle sticker was designated as the
ground truth for the predicted signal at the midpoint between the first and
third stickers. To augment the dataset, we created three additional sets of
SCG segments using the same length of 5000 sample points as described in
the “Cardiac cycle segmentation” subsection, but starting from 2/4, 3/4, and
the total of the average heart rate before each R wave, respectively. By
repeating this generation process, we created a total of 82,514 samples in
each dataset based on the signals recorded from the first 14 subjects during
the two breath-holding conditions. For the test set, which was taken from
the remaining three subjects, we used the same sliding windowmethod but
did not apply any data augmentation, resulting in a total of 1971 samples in
each dataset.

Network training and deploying: To interpolate the SCG signals, we
trained two separate models, one for each direction (right-to-left and head-
to-foot), with a maximum of 300 epochs. To mitigate overfitting, we
implemented early stopping to terminate training if the model’s perfor-
mance no longer improves on the validation set for a predefined number of
epochs. To learn effectively, the model used the Adam optimizer with a
starting learning rate of 0.001. This rate automatically decreased if the
validation performance stagnated for several epochs. This approach facili-
tated convergence to a superior solutionwhile avoiding convergence to local
minima.Abatch size of 128was utilized, and the input size for theCNNwas
set to 5000 × 2 (corresponding to the 2 SCG segments extracted from the
first and third stickers in each sample), while theMLPnetwork had an input
size of 6 × 1 (corresponding to the lateral and longitudinal distances of the
three stickers in each sample from the reference point).

The trainedmodels were initially deployed to predict the SCG signal in
the middle point (green circles in Fig. 1e) between each pair of horizontally
or vertically adjacent stickers (red circles in Fig. 1e). However, during the
first phase of deployment, these models were unable to predict the signals
corresponding to the yellow circles in Fig. 1e. To predict the SCG signals at
these locations, we utilized the same models, using the predicted signals
from the horizontal direction as input to predict the signals at the yellow
circle.

Heart rate calculation from chest videos
OurHR estimation algorithm comprised two sequential steps, illustrated in
Fig. 5.a. In the initial step, an approximate HR was estimated, while the
subsequent step refined this estimation for greater accuracy. In the first step,
each SCG signal in the right-to-left and head-to-foot m × n grids was first
normalized and detrended. To smooth the signals and eliminate short-term
fluctuations or noise, a moving average filter with a window size of 0.6 × fs
was applied, where fs represents the sampling frequency. Subsequently, a
5th-order Butterworth bandpass filter (0.75–1.5 Hz) was used to obtain a
waveform with the same periodicity as the HR from each SCG signal. The
peaks of this waveform were then detected, considering a minimum peak
distance and minimum peak prominence of 60 × fs/HRθ and 0.2 × SDSCG,
respectively, whereHRθ and SDSCG represent amaximumHRthreshold and
the standard deviation of the SCG signal. In this study, HRθ was set to
120 bpm. The instantaneous HR from each SCG signal was then calculated
from the inter-peak intervals. Finally, the average HR was calculated from
the instantaneous HRs of all SCG signals.

Note that the value of theminimumpeakdistance, i.e., 60 × fs/HRθ, was
constant regardless of the SCG signal and subject’s cardiac cycle duration.
As a result, instances occurred where the algorithm either missed peaks or
incorrectly identified additional peaks, leading to less accurate HR
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estimations. However, despite this limitation, our algorithm provided
accurate HR estimations for themajority of signals in both right-to-left and
head-to-foot SCG grids for each subject. Using this to the advantage of our
algorithm, in the second step of our algorithm, we utilized all the average
HRs estimated in thefirst step for each subject to improve the accuracyof the
peak detection. Specifically, the algorithmassessed the standard deviation of
the averageHRs derived fromall SCG signals of each subject. In cases where
the standard deviation surpassed a predefined threshold, indicating varia-
bility in average HRs, the algorithm dynamically calculated a personalized
minimum peak distance for that subject. This adaptive approach aimed to
refine peak detection, ultimately improving the precision of the
estimated HR.

To determine the personalized minimum peak distance, the collection
of average HRs estimated from all the SCG signals in the right-to-left and
head-to-foot direction were clustered into two clusters using k-means
clustering. Assuming the majority of HRs estimated in the first step were
accurate, the larger cluster inherently provided a more reliable representa-
tion of the HR. To enhance the cluster’s integrity, we eliminated outliers by
excluding averageHRs outside the 95% confidence interval of values within
the larger cluster. We then calculated the mean of the remaining average
HRs in the augmented cluster and addedan offset value of 20 bpm to it. This
number (HRp) was used to calculate the personalized minimum peak dis-
tance as 60 × fs/HRp. Consequently, we recalculated all instantaneous HRs
using this refined minimum peak distance. Finally, outliers outside of the
95% confidence interval were removed from the instantaneous HR to cal-
culate the average HR for every SCG signal in the right-to-left and head-to-
foot SCG grids.

Data availability
The data generated and analyzed during the current study are not publicly
available due to the IRB requirements, but a part of the processed data may
be available from the corresponding author on a reasonable request.
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